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SUMMARY

Past studies that have compared LBB stable discontinuous- and continuous-pressure finite element formu-
lations on a variety of problems have concluded that both methods yield solutions of comparable accuracy,
and that the choice of interpolation is dictated by which of the two is more efficient. In this work, we
show that using discontinuous-pressure interpolations can yield inaccurate solutions at large times on a
class of transient problems, while the continuous-pressure formulation yields solutions that are in good
agreement with the analytical solution. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In discontinuous-pressure finite elements, typically implemented using a penalty approach, the
pressure variable can be eliminated at an element level, and only the velocity degrees of freedom
need to be solved for, resulting in an increase in efficiency of the resulting numerical scheme.
Hence, this method has been used extensively for the analysis of incompressible fluid flows [1–12],
and is even used in commercial finite element codes. Kim and Decker [10] compared solutions
obtained using continuous-pressure formulations (which we will subsequently refer to as velocity–
pressure formulations) and discontinuous-pressure formulations (which we will subsequently refer
to as penalty formulations) implemented using a consistent penalty finite element approach [8],
and concluded that both formulations yielded solutions of comparable accuracy, with the penalty
formulation being more computationally efficient due to the implicit treatment of the pressure
field. Similar conclusions have been drawn by other authors as well. The only disadvantage of
the penalty method mentioned in the literature is regarding the choice of the penalty term—a low
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314 C. S. JOG AND R. KUMAR

penalty parameter value leads to an inaccurate satisfaction of the mass-conservation equation,
while a high value leads to numerical ill-conditioning.

We show in this work that the although the discontinuous-pressure finite element method does
lead to accurate solutions in most situations, it can lead to inaccurate solutions on a class of
transient problems. We emphasize that the problem is due to the discontinuous-pressure field and
not due to an improper choice of penalty parameter, since an independent direct implementation of
the discontinuous-pressure approach, where we simultaneously solve for the velocity and pressure
as global variables without using the penalty method, yielded almost identical results as those
obtained using the penalty method.

For the sake of completeness and also since so many different implementations of both methods
are possible, in Section 2, we shall briefly describe our formulation and implementation of the
consistent penalty and velocity–pressure finite element formulations. We use a ‘tangent stiffness’
matrix for both the formulations (Kim and Decker [10] use a ‘secant’ stiffness in their consistent
penalty finite element formulation—note that using a tangent stiffness is crucial to obtain a quadratic
rate of convergence in the vicinity of the solution). In Section 3, we first present problems where
both the discontinuous and continuous-pressure formulations yield good results, and then present
the class of transient problems where the discontinuous-pressure formulation fails to yield a correct
solution. In Section 4, we draw the conclusions from this study.

2. FORMULATION

Let � denote the domain whose boundary � is composed of two regions, �u and �t . We are
interested in finding an approximate numerical solution to the following initial-boundary value
problem.

Find the velocities u, stresses s, rate of deformation D, and tractions t, such that

∇ ·u=0 on � (1)

�

[
�u
�t

+(∇u)u
]
=∇ ·s+�b on � (2)

s=−pI+2�D on � (3)

D= 1
2 [(∇u)+(∇u)T] on � (4)

t=sn on � (5)

t= t̄ on �t (6)

u= ū on �u (7)

u(0)=u0 on � (8)

where ∇u denotes the gradient of the velocity, p is the pressure, � is the dynamic viscosity
coefficient, n is the outward normal to �, b is the prescribed body force on �, t̄ and ū are
the prescribed tractions and velocities on �t and �u , respectively, and u0 is the initial velocity
prescribed on the domain. Note that �t and �u need not be physically disjoint regions. In the penalty
and velocity–pressure formulations described below, for every degree of freedom, we require that
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FINITE ELEMENT FORMULATIONS 315

either the tractions or the velocities be prescribed on the boundary. Thus, for example, at a point on
the boundary, the traction component tx and the velocity components (uy,uz) could be prescribed.

In the penalty method, Equation (1) is replaced by the weaker requirement [1–10]
p=−�(∇ ·u) (9)

where � is a user-specified penalty parameter. Thus, the constitutive relation given by Equation (3),
now reads

s=−pI+r=−pI+CD

where r is the viscous stress and C is the fourth-order constitutive tensor for the viscous stress.

2.1. Consistent penalty finite element formulation

The consistent penalty finite element formulation is obtained by enforcing Equations (2), (6),
and (9) in a weak sense, and using an independent interpolation for the pressure. Thus, if (u�, p�)

denote the variations of the velocity and pressure fields, respectively, then the weak enforcement
of Equation (9) yields ∫

�
p�

[ p
�

+∇ ·u
]
d�=0 ∀p� (10)

whereas that of Equations (2) and (6) yield∫
�
u� ·

[
�

�u
�t

+�(∇u)u−∇ ·s−�b
]
d�+

∫
�t

u� ·(t− t̄)d�=0 ∀u�

By using the identity ∇ ·(sTu�)=u� ·(∇ ·s)+∇u� :s, the relation s=−pI+2�D, and the diver-
gence theorem, the above equation simplifies to

∫
�

�uT�

[
�u
�t

+(∇u)u
]
d�−

∫
�
(∇ ·u�)pd�+

∫
�
[Dc(u�)]TCcDc d�

=
∫

�
�uT�bd�+

∫
�t

uT� t̄d� ∀u� (11)

where Dc and Cc denote the rate of deformation and the material constitutive tensor (for the
viscous stress) expressed in ‘engineering’ form as

Dc=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dxx

Dyy

Dzz

2Dxy

2Dyz

2Dxz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Cc=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2� 0 0 0 0 0

0 2� 0 0 0 0

0 0 2� 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Let the velocity and pressure fields, and their variations (denoted by subscript �) and increments
(denoted by subscript �), be interpolated as

u=Nû, p=Pb

u� =Nû�, p� =Pb�

u� =Nû�, p� =Pb�

The shape functions N are the standard velocity shape functions used in a single-field isoparametric
formulation. In order to satisfy the LBB stability conditions [9, 13], pressure interpolations of the
form �0+�1x+�2y+�3z (i.e. P=[1 x y z]) and �0+�1r+�2z (i.e. P=[1 r z]) are used for
the 27-node hexahedral and 9-node axisymmetric elements used in this work.

Using the above interpolations, for the 27-node hexahedral element, we have

Dc(u
k+1
� )=Bûk+1

�

(∇uk+1
� )uk =RBNL û

k+1
�

∇ ·u� =Bpû�

where

B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1,x 0 0 N2,x 0 0 . . .

0 N1,y 0 0 N2,y 0 . . .

0 0 N1,z 0 0 N2,z . . .

N1,y N1,x 0 N2,y N2,x 0 . . .

0 N1,z N1,y 0 N2,z N2,y . . .

N1,z 0 N1,x N2,z 0 N2,x . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bp =[N1,x N1,y N1,z N2,x N2,y N2,z . . .]

R=
⎡
⎢⎣
ukx uky ukz 0 0 0 0 0 0

0 0 0 ukx uky ukz 0 0 0

0 0 0 0 0 0 ukx uky ukz

⎤
⎥⎦

BNL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1,x 0 0 N2,x 0 0 . . .

N1,y 0 0 N2,y 0 0 . . .

N1,z 0 0 N2,z 0 0 . . .

0 N1,x 0 0 N2,x 0 . . .

0 N1,y 0 0 N2,y 0 . . .

0 N1,z 0 0 N2,z 0 . . .

0 0 N1,x 0 0 N2,x . . .

0 0 N1,y 0 0 N2,y . . .

0 0 N1,z 0 0 N2,z . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Let

M=
∫

�
�NTNd�

G=
∫

�
PTBp d�

H=
∫

�

1

�
PTPd�

Q=
∫

�
�NT[(∇uk)N+RBNL ]d�+

∫
�
BTCcBd�

Kk =Q+GTH−1G

f1=
∫

�
�NTbd�+

∫
�t

NTt̄d�−
∫

�
[BTskc+�NT(∇uk)uk]d�

f2=−
∫

�
PT

[
pk

�
+∇ ·uk

]
d�

fk� = f1+GTH−1f2

Note that since the pressure interpolation is allowed to be discontinuous across element boundaries,
H−1 is composed of distinct block matrices H−1

(e) associated with each element. Thus, the element
stiffness matrix is given by

Kk
(e) =Q(e)+GT

(e)H
−1
(e)G(e) (12)

where the matrices are now formulated over �e, the domain of each element.
Let the previous and current time steps be denoted by the superscripts n and n+1, let the

superscript k denote the value of that variable at the kth iteration in the n+1th time step, and let
tn+1
� denote the difference tn+1− tn . By using a generalized trapezoidal rule, where the solution
is approximated by

ût
n+1 = ût

n +[(1−�) ˙̂ut
n

+� ˙̂ut
n+1

]tn+1
�

the final system of equations is given by

(M+�tn+1
� Kk)(ûk+1

� )t
n+1 = tn+1

� [(1−�)f t
n +�(fk�)t

n+1]+
∫

�
�NT[utn −(uk)t

n+1]d� (13)

where û0= û0 and f t
n =∫

� �NTu̇t
n
. The steady-state solution (when it exists) can be obtained

directly without time-stepping by solving

Kk ûk+1
� = fk�
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2.2. Velocity–pressure integrated formulation

In the velocity–pressure formulation, instead of using Equation (10), we now use∫
�
p�∇ ·ud�=0 ∀p� (14)

In accordance with the LBB conditions, the velocity–pressure interpolations that are used in this
work are 27/8-c and 9/4-c for the 27-node hexahedral and 9-node axisymmetric elements, where
‘c’ denotes a continuous-pressure interpolation. We denote these continuous-pressure interpolation
functions by Np. The semi-discrete equations are now of the form

M

⎡
⎣ ˙̂uk+1

˙̂pk+1

⎤
⎦+Kk

[
ûk+1

�

p̂k+1
�

]
= fk�

where with

Kuu =
∫

�
�NT[(∇uk)N+RBNL ]d�+

∫
�
BTCcBd�

Kup =−
∫

�
BT
pNp d�

Kpu =
∫

�
NT

pBp d�

Kpp =0

fk1 =
∫

�
�NTbd�+

∫
�t

NTt̄d�−
∫

�
[BTskc+�NT(∇uk)uk]d�

fk2 =−
∫

�
NT

p(∇ ·uk)d�

we have

M =
⎡
⎢⎣

∫
�

�NTNd� 0

0 0

⎤
⎥⎦

Kk =
[
Kuu Kup

Kpu Kpp

]

fk� =
[
fk1

fk2

]
(15)

On using the generalized trapezoidal rule, we get the final system of equations as

(M+�tn+1
� Kk)

⎡
⎣(ûk+1

� )t
n+1

(p̂k+1
� )t

n+1

⎤
⎦=

[
fu

fp

]
(16)
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where M and Kk are given by Equation (15), and

fu = tn+1
� [(1−�)f t

n +�(fk1 ) t
n+1]+

∫
�

�NT[utn −(uk)t
n+1]d�

fp =�tn+1
� (fk2 )t

n+1
d�

Updating the viscous stresses corresponding to the prescribed velocity distribution at the beginning
of each time step helps to speed up the convergence within that time step.

As evident from Equations (13) and (16), in the penalty formulation, the global equation solving
needs to be carried out for the velocity degrees of freedom alone, while with the velocity–pressure
formulation, one needs to additionally solve for the nodal pressure degrees of freedom as well
(although, because of the mixed formulation being used, they are much fewer in number compared
with the velocity degrees of freedom).

If u≡[ur uz]T and sc≡[�rr �zz �r z �		]T denote the velocity and stress components in an
axisymmetric formulation, then the relevant matrices are

Cc=

⎡
⎢⎢⎢⎢⎣
2� 0 0 0

0 2� 0 0

0 0 � 0

0 0 0 2�

⎤
⎥⎥⎥⎥⎦

B=

⎡
⎢⎢⎢⎢⎢⎢⎣

N1,r 0 N2,r 0 . . .

0 N1,z 0 N2,z . . .

N1,z N1,r N2,z N2,r . . .

N1

r
0

N2

r
0 . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

R=
[
ukr ukz 0 0

0 0 ukr ukz

]

BNL =

⎡
⎢⎢⎢⎢⎣
N1,r 0 N2,r 0 . . .

N1,z 0 N2,z 0 . . .

0 N1,r 0 N2,r . . .

0 N1,z 0 N2,z . . .

⎤
⎥⎥⎥⎥⎦

3. NUMERICAL EXAMPLES

The system of equations in both, the consistent penalty and the velocity–pressure, formulations
is solved using the WSMP sparse solver [14, 15], and full integration is used to calculate all the
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320 C. S. JOG AND R. KUMAR

Figure 1. 2-D lid-driven cavity flow.

matrices. We use a value of �=1 (backward Euler) at the first time step, and a value of 0.7
subsequently, in all the examples. In order to validate our implementation, we solved the stick–
slip and the abrupt contraction flow problems in Reference [13] (where the Stokes approximation
is used). We chose material parameters such that the Stokes approximation is valid. A perfect
agreement with the results presented in [13] was obtained.

Jog [16] and Sohn [17] have shown that good results are obtained with the hybrid and consistent
penalty methods, respectively, on a variety of steady-state problems (including the 2-D lid-driven
cavity problem), and hence, here, we focus only on transient problems. We discuss the transient 2-D
lid-driven cavity and bounded oscillatory Stokes flow problems. These examples are deliberately
chosen to show that in the first example the penalty method yields a good solution, while in the
second one it does not.

3.1. Transient 2-D lid-driven cavity problem

The setup and boundary conditions are as shown in Figure 1. The length and width of the cavity is
unity. Since 3-D elements are being used, the z-direction velocity is suppressed for all the nodes,
and slip is allowed on the boundary surfaces z=constant so as to mimic a 2-D flow. In order to
avoid an ‘ill-posed’ problem with velocity singularities at the two upper corners, we prescribe the
velocity distribution at the upper surface as [18]

ulid=
{
tanh(�x), 0�x�0.5

tanh(�(1−x)), 0.5< x�1.0

where � is taken to be 50. Note that the above velocity distribution closely emulates the standard
singular boundary condition by providing a smooth but sharp transition from u=0 to u=1. The
material properties used are �=400 and �=1 (Re=400), and in the case of the penalty method
�=1010�. A uniform mesh of 16×16×1 27-node hexahedral elements is used to model the
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Figure 3. Bounded oscillatory Stokes flow.

domain. The time step used is t� =0.125. Almost identical results are obtained using the penalty
and the velocity–pressure formulations as seen from Figure 2. Moreover, they are also in excellent
agreement with the results obtained by Manzari [19] (compare with their Figure 9).

3.2. Bounded oscillatory Stokes flow

The nice feature about this problem is that not only does it have an analytical solution, but it has
also been studied experimentally by Akhavan et al. [20]. Although the focus of Akhavan et al.’s
work was on the transition to turbulent flow, here we shall consider only the case of laminar flow in
order to allow a comparison with the analytical solution. Another attractive feature of this problem
is that since we specify the velocity both at the inlet and outlet, there is no ambiguity associated
with boundary conditions. The domain is shown in Figure 3. As in Reference [20], periodic
boundary conditions are imposed at the inlet and outlet, and the values used are U =0.1107216
and 
=0.342144. The ‘periodic steady-state’ analytical solution derived under the assumption of
fully developed flow is given by [21]

u(r, t)=2U

(
1− r2

R2

)
sin
t+4U
R2

∞∑
n=1

[J0(�nr/R)− J0(�n)]
�2n J0(�n)[�2�4n+
2R4] [
R2 sin
t+��2n cos
t]
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322 C. S. JOG AND R. KUMAR

where J0 is the zero-order Bessel function, �n are the positive roots of the second-order Bessel
function J2(x), R is the radius, and � is the kinematic viscosity. The material parameters used are
�=1000, �=0.001, and in the case of the penalty method, �=1013� (almost identical results are
obtained with an independent implementation based on Equation (14) instead of Equation (10),
where we solve for the velocity and (discontinuous) pressure as global variables without using a
penalty approach, thus showing that the � value being used is appropriate).

Uniform coarse and fine meshes of 20×20 and 40×40 axisymmetric elements are used to
discretize the domain, and time steps of 0.01 and 0.005, respectively, are used. The coarse and
fine mesh results at z=8 after 10 cycles‡ (in order for the flow to reach a periodic steady-state
solution) at some instances during the acceleration and deceleration phases are shown in Figures 4
and 5, respectively. Quite remarkably, as seen from the figures, the results of the velocity–pressure
formulation are in almost perfect agreement with the analytical solution. In contrast, the penalty
formulation results are in error, and at some time instances, there is no reduction in the error even
with the use of mesh and time step refinement, e.g. at 
t=4�/6 and 
t=10�/6, the error at the
axis is substantially larger with mesh refinement! We note that the results given by the penalty
and velocity–pressure formulations are in close agreement at small times; the errors in the penalty
formulation, however, increase progressively with time, resulting in large errors at large times.

Although we have reported the results only for the axisymmetric formulation, similar errors
result even with the use of hexahedral penalty finite elements. In addition, although we have
reported the penalty formulation errors with one choice of inlet velocity profile, similar errors
result with other choices of velocity profile or with different choices of �, in particular �=0.5.
Furthermore, using a Neumann instead of a Dirichlet boundary condition at the outlet does not
reduce the errors in the discontinuous-pressure formulation— the coarse mesh results with such a
condition are presented in Figure 6. Thus, it seems that the discontinuous-pressure finite element
method yields poor results on the class of axisymmetric bounded oscillatory flows.

Though our purpose in this work is to compare the accuracy of the solutions, we shall briefly also
comment on the efficiency of the two schemes. On the 40×40 mesh, the numbers of equations in
the penalty and velocity–pressure formulations are 12 561 and 14 241, respectively. Both schemes
converge to an unbalanced force norm of less than 10−10 in just two iterations within each time
step, so that the only difference in cost is due to the difference in the number of equations.

4. CONCLUSIONS

An example of a transient problem presented in this paper shows that notwithstanding the fact
that discontinuous-pressure finite element methods work well in a large number of cases, they
can be unreliable on a class of bounded oscillatory flow problems where the errors grow with
time, and where the solution accuracy does not improve even with mesh and time step refinement.
Contrary to the finding in Reference [22], it appears that the LBB conditions may be necessary but
not sufficient for stability of solutions in transient problems—a more detailed theoretical analysis
needs to be carried out to verify these findings. In spite of its slightly higher cost compared with
the penalty method, the continuous-pressure formulation seems to be more robust. The higher

‡Thus, e.g. 
t=�/6 is actually 
t=20�+�/6.
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Figure 4. Coarse mesh results for bounded oscillatory Stokes flow.
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Figure 6. Coarse mesh results for bounded oscillatory Stokes flow with a Neumann
boundary condition at the outlet.

cost is also offset by the fact that one directly obtains nodal values of the pressure (which is an
important physical variable) without the need for any extrapolation and averaging.
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